\(\int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx\) [280]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 73 \[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=-2 a^2 x-\frac {a^2 \text {arctanh}(\cos (c+d x))}{2 d}+\frac {a^2 \cos (c+d x)}{d}-\frac {2 a^2 \cot (c+d x)}{d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d} \]

[Out]

-2*a^2*x-1/2*a^2*arctanh(cos(d*x+c))/d+a^2*cos(d*x+c)/d-2*a^2*cot(d*x+c)/d-1/2*a^2*cot(d*x+c)*csc(d*x+c)/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2951, 3852, 8, 3853, 3855, 2718} \[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \text {arctanh}(\cos (c+d x))}{2 d}+\frac {a^2 \cos (c+d x)}{d}-\frac {2 a^2 \cot (c+d x)}{d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d}-2 a^2 x \]

[In]

Int[Cot[c + d*x]^2*Csc[c + d*x]*(a + a*Sin[c + d*x])^2,x]

[Out]

-2*a^2*x - (a^2*ArcTanh[Cos[c + d*x]])/(2*d) + (a^2*Cos[c + d*x])/d - (2*a^2*Cot[c + d*x])/d - (a^2*Cot[c + d*
x]*Csc[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2951

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[1/a^p, Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x]
)^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \left (-2 a^4+2 a^4 \csc ^2(c+d x)+a^4 \csc ^3(c+d x)-a^4 \sin (c+d x)\right ) \, dx}{a^2} \\ & = -2 a^2 x+a^2 \int \csc ^3(c+d x) \, dx-a^2 \int \sin (c+d x) \, dx+\left (2 a^2\right ) \int \csc ^2(c+d x) \, dx \\ & = -2 a^2 x+\frac {a^2 \cos (c+d x)}{d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d}+\frac {1}{2} a^2 \int \csc (c+d x) \, dx-\frac {\left (2 a^2\right ) \text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{d} \\ & = -2 a^2 x-\frac {a^2 \text {arctanh}(\cos (c+d x))}{2 d}+\frac {a^2 \cos (c+d x)}{d}-\frac {2 a^2 \cot (c+d x)}{d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.70 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.40 \[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2 \left (-16 c-16 d x+8 \cos (c+d x)-8 \cot \left (\frac {1}{2} (c+d x)\right )-\csc ^2\left (\frac {1}{2} (c+d x)\right )-4 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+4 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+\sec ^2\left (\frac {1}{2} (c+d x)\right )+8 \tan \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \]

[In]

Integrate[Cot[c + d*x]^2*Csc[c + d*x]*(a + a*Sin[c + d*x])^2,x]

[Out]

(a^2*(-16*c - 16*d*x + 8*Cos[c + d*x] - 8*Cot[(c + d*x)/2] - Csc[(c + d*x)/2]^2 - 4*Log[Cos[(c + d*x)/2]] + 4*
Log[Sin[(c + d*x)/2]] + Sec[(c + d*x)/2]^2 + 8*Tan[(c + d*x)/2]))/(8*d)

Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.41

method result size
derivativedivides \(\frac {a^{2} \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+2 a^{2} \left (-\cot \left (d x +c \right )-d x -c \right )+a^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{2}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )}{d}\) \(103\)
default \(\frac {a^{2} \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+2 a^{2} \left (-\cot \left (d x +c \right )-d x -c \right )+a^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{2}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )}{d}\) \(103\)
parallelrisch \(\frac {a^{2} \left (-16 d x +4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (d x +c \right )+23 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-17 \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}\) \(125\)
risch \(-2 a^{2} x +\frac {a^{2} {\mathrm e}^{i \left (d x +c \right )}}{2 d}+\frac {a^{2} {\mathrm e}^{-i \left (d x +c \right )}}{2 d}+\frac {a^{2} \left ({\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}-4 i {\mathrm e}^{2 i \left (d x +c \right )}+4 i\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 d}\) \(135\)
norman \(\frac {\frac {a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{2}}{8 d}-\frac {a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a^{2} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}-2 a^{2} x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 a^{2} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a^{2} x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {3 a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {3 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}\) \(236\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*(cos(d*x+c)+ln(csc(d*x+c)-cot(d*x+c)))+2*a^2*(-cot(d*x+c)-d*x-c)+a^2*(-1/2/sin(d*x+c)^2*cos(d*x+c)^3-
1/2*cos(d*x+c)-1/2*ln(csc(d*x+c)-cot(d*x+c))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 143 vs. \(2 (69) = 138\).

Time = 0.28 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.96 \[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {8 \, a^{2} d x \cos \left (d x + c\right )^{2} - 4 \, a^{2} \cos \left (d x + c\right )^{3} - 8 \, a^{2} d x - 8 \, a^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 2 \, a^{2} \cos \left (d x + c\right ) + {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right )}{4 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )}} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/4*(8*a^2*d*x*cos(d*x + c)^2 - 4*a^2*cos(d*x + c)^3 - 8*a^2*d*x - 8*a^2*cos(d*x + c)*sin(d*x + c) + 2*a^2*co
s(d*x + c) + (a^2*cos(d*x + c)^2 - a^2)*log(1/2*cos(d*x + c) + 1/2) - (a^2*cos(d*x + c)^2 - a^2)*log(-1/2*cos(
d*x + c) + 1/2))/(d*cos(d*x + c)^2 - d)

Sympy [F]

\[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=a^{2} \left (\int \cos ^{2}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx + \int 2 \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx + \int \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**3*(a+a*sin(d*x+c))**2,x)

[Out]

a**2*(Integral(cos(c + d*x)**2*csc(c + d*x)**3, x) + Integral(2*sin(c + d*x)*cos(c + d*x)**2*csc(c + d*x)**3,
x) + Integral(sin(c + d*x)**2*cos(c + d*x)**2*csc(c + d*x)**3, x))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.42 \[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {8 \, {\left (d x + c + \frac {1}{\tan \left (d x + c\right )}\right )} a^{2} - a^{2} {\left (\frac {2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} + \log \left (\cos \left (d x + c\right ) + 1\right ) - \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - 2 \, a^{2} {\left (2 \, \cos \left (d x + c\right ) - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{4 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/4*(8*(d*x + c + 1/tan(d*x + c))*a^2 - a^2*(2*cos(d*x + c)/(cos(d*x + c)^2 - 1) + log(cos(d*x + c) + 1) - lo
g(cos(d*x + c) - 1)) - 2*a^2*(2*cos(d*x + c) - log(cos(d*x + c) + 1) + log(cos(d*x + c) - 1)))/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.75 \[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 16 \, {\left (d x + c\right )} a^{2} + 4 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 8 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {16 \, a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} - \frac {6 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 8 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}}{8 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/8*(a^2*tan(1/2*d*x + 1/2*c)^2 - 16*(d*x + c)*a^2 + 4*a^2*log(abs(tan(1/2*d*x + 1/2*c))) + 8*a^2*tan(1/2*d*x
+ 1/2*c) + 16*a^2/(tan(1/2*d*x + 1/2*c)^2 + 1) - (6*a^2*tan(1/2*d*x + 1/2*c)^2 + 8*a^2*tan(1/2*d*x + 1/2*c) +
a^2)/tan(1/2*d*x + 1/2*c)^2)/d

Mupad [B] (verification not implemented)

Time = 9.49 (sec) , antiderivative size = 213, normalized size of antiderivative = 2.92 \[ \int \cot ^2(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}-\frac {4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-\frac {15\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{2}+4\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a^2}{2}}{d\,\left (4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}+\frac {a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,d}+\frac {4\,a^2\,\mathrm {atan}\left (\frac {16\,a^4}{4\,a^4+16\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {4\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,a^4+16\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d} \]

[In]

int((cos(c + d*x)^2*(a + a*sin(c + d*x))^2)/sin(c + d*x)^3,x)

[Out]

(a^2*tan(c/2 + (d*x)/2)^2)/(8*d) - (4*a^2*tan(c/2 + (d*x)/2)^3 - (15*a^2*tan(c/2 + (d*x)/2)^2)/2 + a^2/2 + 4*a
^2*tan(c/2 + (d*x)/2))/(d*(4*tan(c/2 + (d*x)/2)^2 + 4*tan(c/2 + (d*x)/2)^4)) + (a^2*log(tan(c/2 + (d*x)/2)))/(
2*d) + (4*a^2*atan((16*a^4)/(4*a^4 + 16*a^4*tan(c/2 + (d*x)/2)) - (4*a^4*tan(c/2 + (d*x)/2))/(4*a^4 + 16*a^4*t
an(c/2 + (d*x)/2))))/d + (a^2*tan(c/2 + (d*x)/2))/d